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On the basis of solving the heat-conduction boundary problem, the nonsteady character 
of the heat-flux distribution in semiinfinite bodies is analyzed, in the presence of 
a heat source at the contact boundary of the bodies. 

It is known that, in the thermal contact of two semiinfinite rods with different initial 
q . .  

temperatures, a constant temperature is established at their contact boundary immediately 
after contact (disregarding the relaxation time, which is of the order of 10 -11 sec for 
solids), and does not change over the course of the whole heat-transfer process [i]. It is 
of interest to elucidate the distribution of the heat fluxes entering each of the semiinfinite 
bodies when there is a heater at their contact boundary. This investigation is conducted 
directly for the development and realization of nondestructive methods of determining the 
thermophysical properties of the material. It is necessary because the realization of abso- 
lute methods of determining the thermophysical properties of material on the basis of probing 
the sample with a known heat flux entails using a symmetric experimental configuration, when 
a thin heater is placed between two samples with identical thermophysical characteristics. 
In this case, it is assumed that the heat flux entering the given sample is equal to half the 
specific power of the heater. It would be more convenient to locate the heater on some base. 
In this case, a standard material with known thermal properties must be used as the base, or 
else the heat flux entering the base must be estimated. 

Consider the one-dimensional problem of the action of a plane heater (of negligible 
specific heat) at the point of contact between two semiinfinite rods. The mathematical tdrmu- 
lation of the problem is written in the form 

aT 1 (x, a:) O~T1 (x, ~) - a ~  , " ~ > 0 ,  x > 0 ,  (i) 
& 0x 2 

OT~ (x, "~) O~T~ (x, T) 
- -a2  , "~:>0, x < O ,  ( 2 )  

& Ox ~ 

r a(x, O ) = T 2 ( x ,  O) = T  O , ( 3 )  

T, (0, ~) -- T= (0, "~), ] 

J ~,2 0T2 (0, "r,) ~ 1 0 T 1  (0, "c) 
a~ ax -- q (% (4)  

T1 (oo, "~) = T~( - -  oo, z) = To. (5 )  

The solution of the Laplace-transformed equations, with the boundary and initial condi- 
tions in Eqs. (3)-(5), takes the form 

exp ~/~ 
Tl(.v, s) To --"$(s) , ( 6 )  

s (b~ + b~) ~/Ts 
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D ~  

where b i = kilga i. 

From the solution in Eqs. 
the cross section x = 0 

~ ( ~ ,  s ) -  To _ ~-(s) 
exp ( lxJ ~/S 

V ~  ] (7) 
s (b~+b~)Vs 

(6) and (7), an expression is written for the heat fluxes in 

q~ ('0 = q (~) b~ , (8 )  
b I -~- b 2 

q~(~) = q(~) b~ 
bl+b2 ( 9 )  

Thus, immediately after switching on the heater, the heat fluxes entering each of the 
bodies will reproduce the law specifying the variation over time in the specific power of 
the heater and will take a value determined by the ratio of the thermal activity of the body 
and the sum of thermal activities of the two bodies. 

It follows from Eqs. (8) and (9) that, with a known thermal activity of one of the semi- 
infinite bodies and a measured heat flux entering this body, the heat flux from the heater 
to another body with unknown properties may be determined. 

Since the heater always has finite dimensions, it is of interest to elucidate what 
influence the finiteness of the heater has on the flux distribution. This problem is of 
equal interest for so-called nondestructive methods of determining the thermophysical 
characteristics based on two-dimensional solutions of the classical heat-conduction boun- 
dary problem with discontinuous boundary conditions of the second kind [2-4]. 

Consider the following problem. I~ the contact plane of two semiinfinite bodies bounded 
by a circle of radius r0, surface heat sources of specific power w(x) distributed uniformly 
over the surface of the circle begin to act at time T = 0. Beyond the limits of this region, 
there is no heat transfer between the bodies. 

The mathematical formulation of the problem is as follows 

aT1 ( ~ I OTa O~TI ) 
0"~ =a~ k Or". + - - +  ~ > 0 ,  z > O ,  O ~ r < o o ,  - -  r Or OZ ~" ]' 
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8T1(oo, z, z) = OT.2(oe, z. z) _ or l ( r ,  oo. T) _ OT2(r, - - o o ,  T) = 0 .  (19)  
Or Or dz ~z 

The solution of Eqs. (i0) and (ii) with the initial and boundary conditions in Eqs. 
(12)-(19) for the flux in cross section z = 0 after Laplace transformation takes the form 

~,(s) B(r, s) 
ql(r, 

s'i~=~ A(r, s)~-B(r,  s~ 
(20) 

where 
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Inverse Laplace transformation of Eq. (20) presents considerable difficulties. When 
w(x) = w 0 = const, the inverse transformation from Eq. (20) may be found for the center of 
the circle (the point z = 0, r = 0). In this case, Eq. (20) is written in the form 

ql (s) = Kb w0 - ~  (21)  /---~- , 

s 1 - - e x p [ - - r o  ~ / / - ~ - - ~ S ] - i - K b ( 1 - - e x p [ - - r ~  V -~2 t )  

where K b = bl/b=. 

The inverse Laplace transformation for the point z = 0, 
dimensionless numbers 

r = 0 is written in terms of 

X 

Q1 - ql  (FOl) Kb = " n! K~ • 

n=0 j=0 

[ e r f c  n - J - ] ( V r ~ - - l )  - - e r f c  n + V ~ K - " + ] ( V ~ - - I )  ] 
2 lfF-'ol 2 tfF-'ol ' 

(22)  

where K a = el/a2; Fol = aiT/r~. 

As Fo I + 

lim ql (FoO = Kb ~/K~ _ ~, 

As Fo~ + 

lim ql(Fo0 _ Kb 
Fo,~0 W0 l @ K b  

C a l c u l a t i o n s  f o r  v a r i o u s  r a t i o s  o f  K a and K b have  been p e r f o r m e d  u s i n g  Eq. (22)  on t h e  
EC-1020 computer (Fig. i). The values o f  the thermophysical characteristics are taken from 
[5, 6]. 
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Fig. i Fig. 2 

Fig. I. Dependence of the dimensionless flux Qi on the Fourier 
number Foi:l) Kb = 11.41, K a = 4.203 (glass-rubber); 2) 237.4, 
1246 (copper-rubber); 3) 3.351, 0.9348 (polymethylmethacrylate- 
rubber). For all three curves the origin of the abscissa is at 

point 0. 

Fig. 2. Dependence of the flux ratio Q2 on the Fourier number 
Fo 2 for K b = 1.147, K a = 1.16 (polystyrene pPS--polymethylmethacry- 

late). 

It is evident from the given results that the maximum redistribution of the fluxes over 
time is observed on the initial section (up to Fo i = i), i.e., precisely in the region which 
is often used in nonsteady methods of determining the thermophysical characteristics. Note 
also that, when K a = i, K b = i, it follows directly from Eq. (22) that QI = 0.5 (the thermo- 
physical properties are equal); when K a = i, K b # i, Ql = Kb/(l + Kb), i.e., the heat flux 
does not depend on the time. This is natural, since it is the thermal diffusivity which 
determines the character of transient thermal processes. 

In [3, 7, 8] it was supposed that heat fluxes entering the semiinfinite bodies from a 
finite heater of constant power at their contact plane are constant. As shown by the present 
results, this assumption may lead to a large error in determining the thermophysical charac- 
teristics. For example, in [8], the error in determining the thermal conductivity because 
of this factor may be more than 5%. 

To establish the validity of the theoretical relations in the method of determining the 
thermophysical characteristics of materials, a physicomathematical model which assumes that 
the ratio of the fluxes ql and q2 entering semiinfinite regions of the sample and standard 
bodies depeds on the thermal activities of the bodies and not on the time was considered in 
[ 9 ] .  

The analytical expression for calculating the ratio q2(Fo2)/ql(Fo 2) at the center of the 
circle (z = 0, r = 0) is written in the form 

al(Fo2) / ~ =  = ] ! (r t - - j ) !  (1--~Kb) n§ 

[erfc uq-I(V'K--~--I) --erfc ~-!- / (~/K-~--I)@]' /~ ]1-1 
2 I//(~Fo~ 2 YK~Fo~ ]J - -  1, 

x 
[ (23) 

where Fo2 = a2~/r ~. 

The curve of q2(Fo2)/q1(Fo 2) shown in Fig. 2 for the case of contact when semiinfinite 
bodies differing in their thermophysical characteristics are in contact with a circular 
heat source clearly shows that this dependence is unsteady in character. Only in the case 
when K a = I is the ratio of f~ux~s q I and q2 independent of the time; see Eq. (23). In the 

general case, when K a ~ i, the ratio q~(Fo2)/qi(Fo 2) depends weakly on the time only in the 
initial (one-dimensional) stage of development of a temperature field at the center of a 
circular source (Fo 2 i 0.05). Subsequently, this dependence has a more clearly expressed 
nonsteady character. 
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Note that 

l ira q o (Fo2) _ Z2 lira q2 (Fo2____~) b2 
F o , ~  ql (Fo2) ),I Fo~-0 q, (F%) b~ 

In [3], in order to preserve the good agreement of the experimental data and the theore- 
tical curves, it was required that the properties of the standard body be as close as possible 
to those of the sample being investigated, without explaining why this requirement arises. 
It is obvious that the increase in measurement error when the thermophysical properties of 
the standard differ from those of the sample is associated with violation of the boundary 
conditions (qz # const, q2 # const). Note also that, even approximate equality of the 
properties of the standard and the sample is very difficult to ensure in practice, since a 
very limited number of standard materials exists at present [i0]. 

NOTATION 

x, r, z, coordinates; T, time; r0, radius of heating spot; q(~), specific heat flux; To, 
initial temperature; w0, w(T), constant and variable specific power of surface heat sources 
in the heating spot; U(T), Heaviside unit step function; az, a2, Xz, %2, bz, b2, thermal 
diffusivity, thermal conductivity, and thermal activity of the first and second semiinfinite 
bodies, respectively; I0(x), K1(x), zero-order modified Bessel function of the first kind 
and first-order Bessel function of the second kind, respectively; erfc(x), additional 
probability integral; Tz(x, T), T2(x, ~), ql(~), q2(T), temperatures of the first and second 
bodies and heat fluxes entering the first and second bodies for a one-dimensional problem; 
Tz(r, z, ~), T2(r, z, T), q1(Fo), q2(Fo), temperatures of the first and second bodies and the 
heat fluxes at the center of the circle entering the first and second bodies for a two- 
dimensional problem; QI = qz(Foz)/w0, dimensionless flux; Q2 = q2(u flux ratio. 
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